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I. Two person zero sum games

The publication of the theory of games (von Neumann and
Morgenstern 1944) is a landmark in modern economics. Its influence
in the field of mathematical economics has been profound. But it
is also fundamental in the applied field of operations research, which
is nothing else but the econometrics' of the enterprise, both private
and public.

We will consider here just two person zero sum games. This
is perhaps the most valuable part of modern strategic game theory,
and certainly the only case in which a complete and satisfactory
solution is available.

Consider the case in which A plays against B. A strategy is
the totality of all possible moves of a player. Consider the case
where the strategies of A are and Aj. Similarly the strategies of
B are Bj, Bg and B3. Then we might construct a gain matrix for A
which is at the same time the loss matrix of B, since what A gains B
loses and viceversa.

TABLE 1

Gain of .<4=Loss of B

Strategy of B

Strategy of A Bi Ba B3 min. of row

Ai 21 11* 31 11* -

A2 32 0 4 0

Maximum of column 32 11* 31

.
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Consider now the situation'of the player A. If he uses his
strategy Ai he will gain. (B will lose) 21, 11 or 31 money units
according to the strategy B uses. But B is ah intelligent opponent.
What A gains loses. Hence if A uses his strategy Aj he can only
count on the minimum of the first row, 11. If A uses his first stra
tegy he must count on 5 using his strategy which minimises his
gain, which is at the-same time the loss pf B.

Suppose A uses his strategy A^. Then he will gain (B will lose)
32, 0 or 4 money units depending on which strategy B utilizes. But
it is in the interest of B to minimise A.'s gains which are B's losses.
Hence A can again only'count on the row minimum 0, which corres
ponds to B's strategy Bg.

Now consider the situation of B. Ta:bre I presents A's gains
which are at the same, time B's: losses.. If 5 utilizes his strategy Bi
he will', lose 21' or 32 money units depending on the strategy which A
utilizes. But since B's losses are A's gains he can only count on the
maximum of the first column, a loss of 32: units resulting from A's
use of his strategy Aj,.

Similarly, if B uses his strategy Bj he can only count on a loss
of 11, the maximum of the second column which results from A
using his strategy A^ If B uses his strategy Bg he has to consider
the possibility that A might use in this situation his strategy Ai so
that he must count with a loss, of 31 money units;

•C^ow in our table Ais the maximiser and Bthe minimizer.
Hence. will try to maximize the row'minima and\B will endeavour
to minimize the column maxima^

In Table 1 there is a common lelement Which' is at the same
time the maximum of- the row minima and the minimum of the
column maxima. This is the minima^ o£jaddlepoint. It is a com
bination of the strategies Ai and~ Bj and, represents a gain of A (loss
of B) of 11 money units. By using his strategy Ai.:Acan-ma1ft^
sure that he will gain at least 11 and by using his strategy Bj, B can
assure himself that he will notJoseLmore-than-1-1 unitsr- The mini-
max or saddle point solves definitely the' two person' zero sum game,
if it exists. . '

But since the numbers in our matrix are perfectly arbitrary the
"minimax or saddle point need not exist. Consider e.g. the following
game matrix:
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TABLE 2

Gain of /4=Loss of B

Strategy of B

Strategy of A B2 Ba row minimum

Ai 9 10 11 9

A2 11 10 9 9 ^ :

A3 12 10 8 8

Column maximum 12 10 11

It is evident that in this case no saddle point (minimax) exists.
Hence we change the problem slightly : ^

Assume that A and B play this game not just once but many
dmes. Assume further that A uses his strategies Ai, Aj and A3 with
the probabilities p-^, and p^. Also assume that B utilizes his stra
tegies Bi, B2 and B3 with the probabilities qx, and q^. Then both
will be interested in the mathematical expectation E of gains (for A)
or losses (for B) :

(1) E=9pxqi+ I0piqi+1 l;'i93+1 l;'2?i+ lOP2q2+^P2<ls+^2ps1i
+ 10/7353+ 8/73^3

Now A is looking for a maximum of the mathematical expectation
and B for a minimum of the mathematical expectation E. The
solutions are for ; Px=2l3, p2=0, 773=1/3; alternatively Pi=i,
P2=l, p^—O. By following either of these two mixed strategies A
can make sure that in the long run he will win at least £=10.

B is looking for a minimum of the mathematical expectation.
His solution is: qi=0, ^2=1, ?3=0 ; alternatively he might use
the following mixed strategy: qi=i, ^2=0, 93=i-. If player B
follows either of these stratagies he can make sure in a long series
of plays to lose not more than £=10.

Whereas a minimax or saddle point exists not always for pure
strategies in arbitrary game matrices, the minimax always exists for
the mathematical expectation. The theory of von Neumann and
Morgenatern (1944) was generalised by Wald (1950).

2. Risk

The economist understands by risk a situation in which an
economic subject (individual or manager of a firm) makes a choice
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under the following conditions. Thejoint probability distribution of
the relevant factors is known. In practice this means that condi
tions are very stable (e.g. no techological progress, no change in
taste) and there is very ample past experience with conditions of
demand, production etc. The distinction between risk, where there
are known probability distributions and uncertainty, where theprob
ability distributions are not known, is due to Knight (1933).

Consider e.g. the situation of a farm in Hancock County,
Ellswirth Township Iowa 1928-52. (Babbar 1955, Tintner 1955),
For the sake of simplicity consider only two activities : jCj growing
corn, and growing flax. Assume the net prices of these commo
dities given ; $1.56 for a bushel of corn and $3.81 for a bushel of
flax. Then inthe short run (neglecting fixed cost) the farmer will
endeavour to maximize the linear function :

(2) a:=1.56;Ci+3.81 Xa.
This linear function is to be maximised under the conditions of

production. These are represented by constant input coefiicients in
the short run. We consider again for simplicity only two factors of
production Land and capital. We make the assumption. that
labour is available in such a quantity that it imposes no restraint on
production.

Using the observed mean values of the input coefficients during
the period of observation the conditions of production might be
represented as follows. For land ;

(3) 0.022740 Xi+0.092440 x2<148.
The average input coefficient of land in the production of corn

is 0'022740 acres. The average input coefficient of land for the pro
duction of flax is 0.092440 acres. The inequality states, that the
total land used for the production of corn plus the total land utilized
in the production of flax cannot be larger than the total land avail
able on an average Iowa form, 148 acres. .

The second condition refers to the utilization of capital. Using
again the average values of the capital input coefficients over the
whole period, we have for capital the following restrictions :

(4) 0.317720 Xi+0.969500 X2<1800. ^
It takes on the average a capital of $0.317720 to produce a

bushel of corn. Similarly, on the average it takes $0.969500 fo
produce a bushel of flax. The inequality expresses the fact that the
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total capital available for the production of corn and flax cannot be
larger than the capital at the disposal of an average Iowa form,,
which is 11800.

Further, we have the evident assumption that it is not possible
to produce negative amounts of any commodity.

(5) Xi>0, .\:2>0.

The solution of this maximum problem is as follows ; The
maximum profit is |8837.971 can be achieved, by producing
Xj=5365.266 bushels of corn (maize) and X2=0 bushel of flax. In
order to achieve this result it is necessary to utilize only 128.829
acres of land, z.e. to leave 19.171 acres unutilised. On the other
hand, all §1800 of capital will be used.

It is remarkable, that to each maximum linear programming
problem there exists a dual minimum problem. In our case it is as
follows. Introduce two new unknowns, the .accounting or shadow
prices of land and capital and u^. These are not necessarily mar
ket prices but bookkeeping prices which enable the farmer to com
pute cost rationally. He will now endeavour to minimize the
accounting or bookkeeping cost :

(6) z*=148 Mi+lSOO Mg.

The conditions under which these costs are minimized are now :

(7) 0.022740 Hi+0.317720 M2>1.56.

This condition refers to the production of corn. It states that
the imputed cost of land plus the imputed cost of capital used in
theproduction of maize must be at least as large as the net price of
maize (|1'56).

The second inequality for the minimum problem is :

(8) 0-092440 Ml -+ 0-969500 > 3-81.

This inequality refers to the production of flax. It states that
the imputed cost of land plus the imputed cost of capital in maize
production cannot be smaller than the net price ofcorn ($3'81).

Also, of course, the imputed or shadow prices cannot be
negative:

(9) ^ 0, W2 ^ 0,
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The solution of the dual minimum problem is as follows:

The minirnum imputed cost is z= 8837-971, exactly equal to the
maximum net profit This is achieved by making = 0. - The
imputed cost of land is zero, land is for the typical farmer a free
good. This follows from the fact that he does not utilize all 148
acres available, but leaves 19-171 acres uncultivated. Land is a free
good for him. It would cost him nothing to use another acre.

On the other hand, the imputed cost of capital is M2 = 4*91.
Another dollar's worth of capital would be worth $4'91 to the
typical farmer.

Consider now a problem in the theory of risk. Assume that
the farmer still maximizes his net profit z (2) but now under the
following conditions:

(10) + 148

^21^1 + ^22^2 < 1800

and also under the non-negativity conditions (5). The bij are the
input coefficients for land and capital in the production of corn
and flax. We assume that they are normally and independently
distributed with the following arithmetic means and standard devia
tions. These are based upon observations during the period
indicated.

TABLE 3

Input coefficient Arithmetic Standard deviation

bii 0-022740 0-0065205

*12 0 092440 0-0256583

*21 0-317720 0-0853'977

*22 0-969500 0-4338177

By numerical methods it is possible to derive the approximate
distribution of the objective function z. The arithmetic mean of
net profits is ^11,081, the standard deviation 7608, skewness
Yi= 1-095, kurtosis Y2 = 0-733. The lower 95% probability limit
is 2000.

The derivation of the (approximate) probability distribution
of the objective function is called the passive approach in stochastic
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linear programming (Tintner 1960). It might be useful in comparing
two farmS'in different states, say Iowa and Caifornia.

Ah the active approach to linear programming we consider on
the contrary the problem fixed, instead of comparing two different
problems. The policy variables in the active approach are the
allocations of the available resources. Denote by the proportion
of land allocated to the growing of corn ; by the proportion of
land used for the production of flax (Wh + Mi2=I). Also, denote
by "21 the proportion of capital used in the growing of corn; by
Mas the proportion of capital used for the growing of flax
(M21 + U22 = 1). We also assume that the resources (land and
capital) are fully utilized.

The arithmetic mean of the probability distribution of
anticipated net profit z under various allocations of the resources
(land and capital) is shown in the following table;

TABLE 4

Arithmetic mean of profits

Allocation of land

Allocation of capital "11 = 0
"12 = 1

IIII

"11 = i
"12 = i

IIII

IIII 01—

"21 — 0 "22 = 1 5704 5313 5168 2073 0

"21 = i «22 = i 5059 6394 5981 4586 2537

"21 = 'i «22 = i 4082 6027 7008 6799 4945

«21 = i «22 = i 2539 4779 6713 7584 6925

"21 — 1 "22 = 0 0 2973 5075 7272 8472

The figures in this table have to be intrpreted in the following
way: Assume e.g. that the farmer allocates one-fourth of this
land to Corn (wji = i) and hence three fourths of the land to flax
("12 = 4).' Assume further, that he allocates one-half of the capital
for the production of corn (Wji = 1) and one half of his capital to
the production of flax = i). Then in the long run, on the
average he can expect a net profit of §6027, etc.

It is evident from the Table that the optimum allocation of
resources is achieved, from the point of view of maximizing the
mathematical expectation of profits, i.e. the average profit in a long
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series of production, is to allocate all land (Mh = 1) and
("21 = 1) to the production of corn and no land
capital (M22 = 0) to the production of flax.. •'

The criterion of the mathematical expectation
mean of the probability distribution) is appealing, if we
long series of trials or experiments (Marschak 1951).
cautions policy would be e.g. to maximize the profit
be achieved with e.g. 95% probability. This corresponds
fiducial or confidence limit well known in statistics.

TABLE 5

Lower 5% probability of profits

Allocation of land

89

all capital
= 0)and no

(arithmetic
consider a

But a more

which can

to the 95%

Allocation of capital "11 = 0
«12 = 1

«ii =' i
"12 = 1

«ll = i-
«12 = i

«ll = f
"12 = i

«ii = 1
«ia = 0'

1121 = 0 W22 = 1 3437 3199 • 2132 1067 0 -

"21 = i "22 = i 3000 4413 . 3608 2660 1559

"21 = 2 «22 = i 2099 3898 5133 4098 3119

"21 = J "22 i 1049 2806 4419 5505 4676

"21 — ^ "22 — 0 0 1465 2928 4361 5749

This table represents the profit which may be obtained with
95% probability. Consider e.g. the following allocation of
resources : The average farmer uses, half of his land for growing
corn (Mil = i) and halffor growing flax (i/ja = i). Further, he uses
three-fourths of his capital for corn , production (Mji = |) and only
one-fourth for the growing offlax (m2, = |.). Then he might expect,
with a probability of 95% a profit not smaller than $ 4419, etc.

It appears from this table that:again the optimum allocation of
resourcers is as follows : In order to maximize the profits which can
be anticipated with a probability of 95 % the optimum allocation of
resources is again : The farmer should utilize all his land for growing
corn (w!i=l) and none for the production of flax (Mi2=0). Also it
is best to allocate all the capital! to corn production (1/21 = 1) and
no capital at all to the production of flax (m23=0). In this way the
farmer has a probability ofat least 95 in hundred to secure a profit
of $ 5749.
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The active approach to stochastic linear programing where we
consider the allocation of resources as policy variables, is more use
ful in practice than the passive approach, where we simply are able
to compare several stochastic situations.

3. Uncertainty

Uncertainty exists if the individual in question has to act under,
conditions where the.relevant probability distributions are not known.
This"situation is frequently called ; Gains against nature.

It is best represented in game theoretical form. Consider an
individual who plays against nature (Wald 1950). The situation is
represented in the following table : ,

TABLE 6

Gain matrix for the individual State of nature

action of the individual J2 Row minimum

ai 0 3* 0

aa 1* 1 1

The interpretation of this matrix is as follows :

Suppose nature is in the state ^i. Then if the individual takes
action he will gain zero; if he takes action he will gain one.
Suppose on the other hand that nature Is in the state s^. Then if
individual takes action he will gain three; if he takes action he
will gain one. v,/

The probabilities of the states of nature are not known. Hence
Wald argues, the individual should behave like a player in a two
person zero sum game. Since nature is assumed to be an intelligent
opponent, the individual can only count on the row minimum, i e.,
expects the worst for each action he takes.. , ^

We indicate the row minima in the last column of Table 6. The
individual seeks the maximum of the row minima and will hence take
action a^.y

The idea of treating problems of this nature as two person zero
sum game assumes that nature acts like an intelligent opponent.

J
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This is evidently not the case and the theory of Wald must be con
sidered excessively pessimistic. Nevertheless the idea of minimax
strategies must be considered one of the most important advances in
stafistics and probability theory comparable only to Bayes theorem,
and just as much subject to dispute.

Various modifications of the minimax principle have been
suggested. One idea is due to Savage (1954): Minimax regret.

The individual in question considers as his regret the difference
between the result of his action and the action he would have taken

if he had known the state of nature. We have starred in Table 6

the maximum for each column (state of nature). Deducting these
values from each value in Table 6 we derive the regret matrix.

. . TABLE 7

Regret matrix for the individual State of nature

Action of the individual •S2 Row minimum

ai —1 0 . —1

aj 0 -2

•

-2 •

Again we apply the minimax principle. Nature is trying to
maximize the regret of the individual. This involves the row minimum
which is indicated in the last column of Table 7. The individual will

choose the minimum of these negative numbers and hence action 1.

Another and older approach goes back to Bayes and Laplace :
If the probabilities of the state of nature are known then equal
probabilities are assigned to each state of nature. By assigning the
probability | to the states and we derive the following table for
the mathematical expectation of each action given these a priori
probabilities :

TABLE 8

Action of individual Mathematical expectation

ai 3/2

aa 1
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If theindividual tries to maximize his mathematical expectation
he will choose action a^.

Still another approach is due to Hurwicz. Here the individual
considers not only the minimum, but also the maximum which might
resultfrom his action. We present this in the following table :

TABLE 9

Action of the Row Row Hurwicz
individual minimum maximum criterion

ai 0 3 3-3w

«2 1 1 1

We introduce now, following Hurwicz, a weighted mean of the
minimum and' maximum, giving the minimum the weight
and the maximum the weight \=w. Here w might be considered a
measure of pessimism for the individual. If w=0, he always expects
the best to happen, if ^=1 he anticipates the worst to happen in any
case. This last case is of course the niinimax solution discussed
above.

We see in the above table that the individual will choose action
ax if 2/3<w<l, and action if 0^w<2/3.

Another approach dealing with the problem of uncertainty in
a situation in which the a /jrorz probabilities are completely unknown
is the theory of Carnap (1950 ; 1949). Consider e.g. a completely
newcommodity where no experience is available. As an example we
consider tickets for a rocket ship going to the moon or Mars.
Assume that there are. just two customers available who are rich
enough to buy tickets. According to a special theory of the Carnap
(c") the situation can be represented in the following table (Pege 12),
where the numbers indicate the number of tickets bought by each
customer. We assume that each of the two customers buys no,
one or two tickets.

In this table we indicate the state descriptions in each line, e.g.,
in state description 1, neighter Ci nor buys a ticket ; in state des
cription 2, Ci buys no ticket but Cj purchases 1, etc.

All state descriptions which may be obtained by permutations
of the individuals (in our case Ci and Cg) form in the Carnap theory
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TABLE 10

Carnap Probability C

State description Number of Tickets bought Probability

Ci C2

1 0 0 1/6

2 0 1 1/12

3 1 0 1/12

4 0 2 1/12

5 2 0 1/12

6 1 1 1/6

7 . 1 2 1/12

8 2 1 1/12

9 2 2 1/6

a structure description. Hence state description 1 is a structure
description, so are state descriptions 6 and 9, which form distinct
structure descriptions.

Also, state descriptions 2 and 3 form a structure description ;
so do state descriptions 4 and 5 ; alsostate descriptions 7 and 8 form
together one structure description.

By using the Carnap the theory a* and assigning each structure
description the same a priori probability we obtain the probabilities
in the 1st column of Table 10, if we assign the same probability to
each state description within a given structure description. Calling
X the number of tickets sold we obtain the following a priori prob
ability distribution : (Table 11, Page 13)

Having obtained an a probability distribution we con
sider now the following simple inventory problem : Suppose thfe
entrepreneur constructs a rocket with a seats ; if he actually sells x
places for two money units each and it costs one unit of money to
construct a place, his profit will be :
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(ii) P=2x—a

P=a x>a

TABLE 11

A priori probability dtsrribution

Number of tickets sold Probability

X Px

0 1/6

1 .1/6

2 1/3

3 1/6

"4. 1-/6

Now we construct the following table, which shows the" situation if a;
tickets are-sold and a rocket of a places is constructed :

TABLE 12

Profits

Size cf rocket a

Number of tickets
sold X

Probability
Px a=0 a—I a=2 a=2, a=4

0 1/6 0 —1 . —2 —3 —4

1 1/6 0 1* 0 —1 —2

2 1/3 • 0 1 2* 1 0

3: 1/6. 0 1 2 3 2

• 4 1/6 0 1 2 3 . 4

Mathematical
expectation

0 2/3 1* 2/3 0

Consider e.g. the case where a rocket of sizea=2 is constructed
The cost is 2 units. If no ticket is.sold (x=0)-the profit is —2. If
:s:=l unit is sold the profit.is 0.. In case :x:=2 places are sold, 'the
profit is 2 unitSj and the same profit is realized for any

Whichi decision criterion should be adopted ? Consider first
the mathematical expectation. This is computed witfcthe help of •
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a priori probabilities exhibited^ in the: second column of the table.
If this criterion is.adopted, then a rocket of siz& fl=2 should be
constructed.

But instead of the mathematical expectation of the probability
distribution of profits we might also consider the mode (largestvalue)
or median (middle value) of the distribution. The mode occurs with
x=2 and this is also, the median, since the distribution is symmetrical.
If the modal or median profit is considered,, a rocket of size a=2.
should be constructed.

Finally, consider the highest profit which can be made with
probability 2/5. This corresponds to,the lower 33% confidence or.
fiducial limit in statistics.. If this point of view is adopted this
choice corresponds to ;c=l and it follows that a rocket of size a=\
should be constructed.

This is certainly a possible approach with no previous informa
tion at all. The situation is slightly different if we have a small
sample available. As the sample becomes large we have the problem
previously-discussed under the; heading of risk.

Consider now as situation where ai (small) sample of s persons
is available. Of these, s persons have bought no ticket, one
ticket, ^2 twp tickets.

We want to make a prediction for a new sample of size s'.
The probability that there will be 5'o people, who buy no tickets, s\
who buy one and j'a who purchase two tickets, followsfrom Carnap's
(1950) theory of predictive inference.

Now we make the following assumptions : We have available
a past sample of j=3'persons; of"these ,s'o=2 have-not bought any
tickets, 51= r has bought one place and J^^ve bought two
tickets.

We predict for a.new sample, of s'=3' persons.. Denoting, by
5'o, s\ and s'j,the; number of people who will buyzero,, one and. two
tickets, we derive for the probability the following formula for
Carnap's predictive inference :

(12) , 36-
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This is the probability that we obtain in a sample of s'=3
customers the following results: s'o buy no ticket, s\ purchase one
ticket, j'2 buy two tickets. The s '̂, s'l, s'2 are non-negative numbers
and

Making exactly the same assumptions as below we represent
the situation in the following table :

TABLE 13

Profits

Size of the ticket a

Number of tic
kets sold

probabi
lity

a=0 a=l a=2 a=3 a=4 a=5 a=6

X Px

0 10/56 . 0 -1 -2 -3 -4 —5 —6

1 12/56 0 1* 0 —1 -2 -3 —4

2 15/56 0 1 2* 1 0 —1 . —2

3 10/56 0 1 2 3 2 1 0

4 6/56 0 1 2 3 4 5 2

5 2/56 0 1 2 3 4 5 4

6 1/56 0 1 2 3 4 5 6

mathematical
expectation

0 46/56 48/56* 30/56 —8/56 -58/56 —112/56

Now if the manager bases himself upon the mathematical
expectation computed with the help of Carnap's theory of predictive
inference, he will construct a rocket with a=2 places. If he bases
himself upon the mode of the probability distribution, he notes that
the mode occurs with x—2. Hence again from the point of view he
will construct a rocket with a=2 places.

Suppose however he wants to maximize the profit which can be
made with at least 41/56=76% probability. This corresponds to

x=l and would induce him to construct a rocket onIya=l places.

/
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